

TridentShapes[™] ABS 21890WH

Acrylonitrile Butadiene Styrene

Product Description

TridentShapes[™] ABS is an excellent choice for applications which require high impact resistance, strength and stiffness. Trident ABS is an ideal material for machining structural components and pre-production prototypes.

ABS resin is a terpolymer formed by blending an amorphous thermoplastic copolymer of acrylonitrile and styrene with an elastomeric component, such as polybutadiene or a butadiene polymer. By altering the ratio of these three monomers, ABS resins can offer an expansive assortment of performance properties tailored to meet a wide range of end-use requirements. Because of its good balance of properties, toughness-strength-temperature resistance coupled with its ease of processing, TridentShapes[™] ABS has a very wide range of applications.

Characteristics

- Lightweight
- Easy to fabricate
- Good strength & stiffness
- High impact resistance
- Excellent aesthetic properties

Applications

- Structural components
- Housings
- Support blocks
- Models
- Machined prototypes

General

Annealed Plate:.250 through 6.00" thickPlate sizes:24x48 • 48x96 • 50x124 • 30x60Extruded Rod:.250 through 8.00" diameterCut to size shapes and custom sizes available on requestTubular bar:up to 8.00" diameter, wall sizes up to .500"Agency ratings:FDA 21CFR 181.32 • ASTM D4673 ABS0110 B54240Standard color:Bright White

Physical	Nominal Value Unit	Nominal Value Unit	Test Method
Density / Specific Gravity	0.037 lb/in ³	1.040 g/cm ³	ASTM D1505
Mechanical	Nominal Value Unit	Nominal Value Unit	Test Method
Tensile Modulus	329000 psi	2270 Mpa	ASTM D638
Tensile Strength (Yield)	6380 psi	44 Mpa	ASTM D638
Tensile Strength (Break)	4790 psi	33 Mpa	ASTM D638
Tensile Elongation (Yield)	2 %	2 %	ASTM D638
Tensile Elongation (Break)	24 %	24 %	ASTM D638
Flexural Modulus	334000 psi	2305 Mpa	ASTM D790
Flexural Strength	10200 psi	70 Mpa	ASTM D790
Impact	Nominal Value Unit	Nominal Value Unit	Test Method
Notched Izod Impact 73°F (23°C)	6 ft-lb/inch	320 J/m	ASTM D256
Instrumented Dart Impact 73°F (23°C) Total Energy	9 266 in-lb	30 J	ASTM D3763
Hardness	Nominal Value Unit	Nominal Value Unit	Test Method
Rockwell Hardness	112 R scale	112 R scale	ASTM D785

TridentShapes™ ABS

Thermal	Nominal Value Unit	Nominal Value Unit	Test Method
Deflection Temperature 66 psi	201 °F	93.96 °C	ASTM D648
Deflection Temperature 264 psi	176 °F	80.06 °C	ASTM D648
Vicat Softening Temperature	210 °F	98.97 °C	ASTM D1525 ²
Electrical	Nominal Value Unit	Nominal Value Unit	Test Method
Arc Resistance	PLC 6	PLC 6	ASTM D495
Comparative Tracking Index (CTI)	PLC 0	PLC 0	UL 746A
High Amp Arc Ignition (HAI)	PLC 0	PLC 0	UL 746A
High Voltage Arc Resistance to Ignition (HVAR)	PLC 3	PLC 3	UL 746A
Hot-wire Ignition (HWI)	PLC 3	PLC 3	UL 746A
Flammability	Nominal Value Unit	Nominal Value Unit	Test Method
Flammability Rating	HB @ .059	HB @ 1.5mm	UL94

* This information is based on average resin value specifications and is only to assist and advise you on the current technical knowledge, it is given without obligations or liability.

Fabrication & Machining Guidelines

The following guidelines are presented for those machinists not familiar with the machining characteristics of plastics. They are intended as guidelines only, and may not represent the most optimum conditions for all parts. TridentShapes™ performance plastics are stress relieved to ensure the highest degree of machinability and dimensional stability. However, the relative softness of plastics (compared to metals) generally results in greater difficulty maintaining tight tolerances during and after machining.

Things to know before machining performance plastics

- Thermal expansion is up to 10 times greater with plastics than metals
- Plastics lose heat more slowly than metals, so avoid localized overheating
- Softening (and melting) temperatures of plastics are much lower than metals
- Plastics are much more elastic than metals

Because of these differences, you may wish to experiment with fixtures, tool materials, angles, speeds and feed rates to obtain optimum results.

Tips for getting started

- Positive tool geometries with ground peripheries are recommended.
- Carbide tooling with polished top surfaces are suggested for optimum tool life and surface finish.
- Diamond coated or polycrystalline tooling provides optimum surface finish when machining PEI, PAI, PBI and other

Polvimides.

• Use adequate chip clearance to prevent clogging.

Sawing

Band sawing is versatile for straight, continuous curves or irregular cuts. Tablesaws and panelsaws are convenient for straight cuts and can be used to cut multiple thicknesses and thicker cross sections up to 6.00" with adequate blade projection and power. Saw blades should be selected based upon material type and thickness. For precision cutting services, contact your sales representative or go to https://www.tridentplastics.com/capabilities/cutting/

Milling

Sufficient fixturing allows fast table travel and high spindle speeds when end milling plastics. When face milling, use either high positive or high shear geometry cutter bodies.

Turning

Operations require inserts with positve geometries and ground peripheries. Ground peripheries and polished top surfaces generally reduce material build-up on the insert, improving the attainable surface finish. A fine grained C-2 carbide is generally best for turning operations.

Drilling

The insulating characteristics of plastics require consideration during drilling operations, especially when hole depths are greater than twice the diameter.

Threading and Tapping

Threading should be done by single point using a carbide insert and taking four to five 0.001" passes at the end. Coolant usage is suggested. For tapping, use the specified drill with a two flute tap. Remember to keep the tap clean of chip build-up. Use of a coolant during tapping is also suggested.

Coolant Recommendations

Coolants are generally not required for most plastic machining operations (not including drilling and parting off). However, for optimum surface finishes and close tolerances, non-aromatic, water soluble coolants are suggested. Spray mists and pressurized air are very effective means of cooling the cutting interface. General purpose petroleum based cutting fluids although suitable for metals and some plastics, may contribute to stress cracking of amorphous plastics such as ABS, PMMA Acrylic, PC Polycarbonate PPE+PS Noryl, PSU Polysulfone, PPSU Polyphenylsulfone, and PEI Polyetherimide. Trident recomends using Premier Polycut™ from Tullco Inc. https://tullco.com/ for these sensitve materials.

